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Abstract Efficient strategies for solving semi-analytically the transient groundwater head in a coupled N -layer
aquifer system φi (r, z, t), i = 1, . . . , N , with radial symmetry, with full z-dependency, and partially penetrating
wells are presented. Aquitards are treated as aquifers with their own horizontal and vertical permeabilities. Since
the vertical direction is fully taken into account, there is no need to pose the Dupuit assumption, i.e., that the flow
is mainly horizontal. To solve this problem, integral transforms will be employed: the Laplace transform for the
t-variable (with transform parameter p), the Hankel transform for the r -variable (with transform parameter α) and
a particular form of a generalized Fourier transform for the vertical direction z with an infinite set of eigenvalues
λ2

m (with the discrete index m). It is possible to solve this problem in the form of a semi-analytical solution in the
sense that an analytical expression in terms of the variables r and z, transform parameter p, and eigenvalues λ2

m(p)
of the generalized Fourier transform can be given or in terms of the variables z and t , transform parameter α, and
eigenvalues λ2

m(α). The calculation of the eigenvalues λ2
m and the inversion of these transformed solutions can only

be done numerically. In this context the application of the generalized Fourier transform is novel. By means of
this generalized Fourier transform, transient problems with horizontal symmetries other than radial can be treated
as well. The notion of analytical solution versus numerical solution is discussed and a classification of analytical
solutions is proposed in seven classes. The expressions found in this paper belong to Class 6, meaning that the
transformed solutions are written in terms of eigenvalues which depend on one transform parameter (here p or
α). Earlier solutions to the transient problem belong to Class 7, where the eigenvalues depend on two transform
parameters. The theory is applied to three examples.
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146 E. J. M. Veling, C. Maas

1 Introduction

After the derivation of the analytical solution for the steady, three-dimensional groundwater head in a system of
N coupled parallel, homogeneous aquifers (see [1], and for a numerical implementation [2, 3]), interest has arisen
to solve the transient case. A partial solution has been given by [4–6], where the authors consider vertical flow in
aquitards and horizontal flow in aquifers. The first paper exhibits the analytical solution for a three-layer system.
The two other ones give results for an N -layer system; the second one uses numerical inversion of the Laplace
transform and the third one takes advantage of some special generalized Fourier transform (case di = 0, to be
explained in Sect. 3.3). Generalized Fourier transforms have been studied by, e.g., [7–11]. More information is also
available from [12–16]. Many results for steady and some transient N -layer systems with no explicit dependence
on the vertical variable have been published by Bruggeman [17, pp. 431–470].

We consider possible solution strategies and, contrary to existing approaches, we solve this problem without
any restrictions. We treat aquifers and aquitards alike, i.e., both have horizontal and vertical permeabilities. More
specifically, we discuss the influence of a well in such a system, but other hydrological features, such as natural
groundwater flow, may be solved in a similar fashion. We shall use among others generalized Fourier transforms
(case di �= 0, to be explained in Sect. 3.3). It turns out that an analytical solution in a strict sense does not seem to be
possible, but we can specify the transformed solution either in terms of the variables r and z, transform parameter
p, and eigenvalues λ2

m(p) (27) or in terms of the variables z and t , transform parameter α, and eigenvalues λ2
m(α)

(31). These expressions need to be inverted numerically.
We discuss the notion of analytical solution in general, because, even if one cannot derive a fully analytical

solution, partial results (after which one has to apply numerical techniques) are more informative than a purely
numerical approach. The presentation of the analytical solution as an object which has to be inverted with respect
to one or more of the independent variables (t , r , and z) numerically, gives more insight than to calculate the entire
solution fully numerically by finite elements or finite diferences. Nowadays, it is possible to perform such inversions
in a reasonable time, even if one has to recalculate eigenvalues many times due to dependencies on other transform
parameters. See also [11, Chap. 3.2], [9] for a general account and references for more literature related to this
topic.

2 Layered system

In this paper we study the transient groundwater head φ in a system of N coupled parallel, homogeneous, horizontal
aquifers. We denote φi [L] as the head in layer i , i = 1, . . . , N , numbered from the bottom-layer (i = 1) to the
top-layer (i = N ). The z-axis is pointing upwards. So, the i-th aquifer is characterized by Li−1 ≤ z ≤ Li , where
L0 = 0, and L N is the total thickness of the system. The thickness of an individual aquifer is thus Di = Li − Li−1

[L]. We suppose that there is a well active at r = 0, so we pose this groundwater head problem with radial sym-
metry in an infinite horizontal domain, but the general conclusions of this paper are also valid for cases with only
natural groundwater flow caused by boundary conditions on a finite horizontal domain. We allow the horizontal
permeability to be different from the vertical permeability (Kh,i , Kv,i [LT−1], respectively) for each aquifer. Also,
the specific storativity Ss,i [L−1] is assumed to be different for each aquifer.

As initial condition we assume that the head φi (r, z, 0) equals φi0(r, z), and at the bottom and top we assume
general inhomogeneous boundary conditions of mixed type (also called Cauchy or Robin condition) such that the
inflow is proportional to the head. The other two types of boundary conditions (Dirichlet, Neumann) can be derived
from this general case. An important condition is the requirement of continuity of the head and the vertical flux at
the common boundaries of the aquifers. The variable Qi [L3T−1] denotes the pumping rate of the well at r = 0
with a partially penetrating filter with its center at z = ai , and with length li [L] in aquifer i . The variables ai and li
exist only if there is a well active in aquifer i , at r = 0. One could treat cases where there is more than one partially
penetrating filter at r = 0 in an aquifer by the same method, through superposition.

All these conditions lead to the following system of partial differential equations with initial and boundary
conditions, for i = 1, . . . , N (where applicable):
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Strategy for solving semi-analytically three-dimensional transient flow 147

Ss,i
∂φi

∂t
= Kh,i

(
∂2φi

∂r2 + 1

r

∂φi

∂r

)
+ Kv,i

∂2φi

∂z2 , t > 0, r > 0, Li−1 < z < Li . (1)

The initial condition is:

φi (r, z, 0) = φi0(r, z), r > 0, Li−1 < z < Li . (2)

The bottom and top boundary conditions are:

α0φ1(r, 0, t)− β0 Kv,1
∂φ1

∂z
(r, 0, t) = fb(r, t), t ≥ 0, r > 0,

αNφN (r, L N , t)+ βN Kv,N
∂φN

∂z
(r, L N , t) = ft (r, t), t ≥ 0, r > 0,

(3)

where α0 ≥ 0, and β0 ≥ 0, but not both α0 = β0 = 0, (4)

and where αN ≥ 0, and βN ≥ 0, but not both αN = βN = 0,

with (α0, αN [−], β0, βN [T], fb, ft [L]). The interface conditions are:

φi (r, Li , t) = φi+1(r, Li , t), t ≥ 0, r > 0, i = 1, . . . , N − 1,

Kv,i
∂φi

∂z
(r, Li , t) = Kv,i+1

∂φi+1

∂z
(r, Li , t), t ≥ 0, r > 0, i = 1, . . . , N − 1.

(5)

The vertical boundary conditions are:

limr→0

(
r
∂φi

∂r
(r, z, t)

)
= Qi

2πKh,i li
, t ≥ 0, ai − li/2 ≤ z ≤ ai + li/2,

i.e., z ∈ Ai = [ai − li/2, ai + li/2],
limr→0

(
r
∂φi

∂r
(r, z, t)

)
= 0, t ≥ 0, Li−1 ≤ z < ai − li/2 and ai + li/2 < z ≤ Li .

(6)

For the ease of presentation we assume from here on that φi0(r, z), fb(r, t), ft (r, t) are all equal to zero. An arbitrary
initial function or inhomogeneous boundary conditions will complicate the solution, but not essentially.

3 Integral transforms

To find the analytical solution for the system (1–3), (5), and (6) with three independent variables (r , z, t) one usually
applies integral transforms to get rid off the differentials; see for a general account [18, Chaps. 2, 3, and 5]. For the
equations of (1) one has the possibility to apply the Laplace transform with respect to t , the Hankel transform with
respect to r , and a generalized Fourier transform in the z-direction which takes care of the interface conditions.
More information with respect to these three transforms is given in the following.

3.1 Laplace transform

L[φ](p) = φ(r, z, p) =
∞∫

0

φ(r, z, t) exp (−pt) dt, (7)

with the main property for our problem
∞∫

0

∂φ(r, z, t)

∂t
exp (−pt) dt = pφ(r, z, p)− φ(r, z, 0). (8)

The theoretical general form for the inverse of the Laplace transform reads (φ(r, z, p) exists for Re(p) > p0):

L−1[φ](r, z, t) = φ(r, z, t) = 1

2π i

∫
L

φ(r, z, p) exp(pt) d p,

where L = {s|s = (p1, iq), p1 > p0, p1 fixed, −∞ < q < ∞}, the Bromwich contour.
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148 E. J. M. Veling, C. Maas

3.2 Hankel transform

H[φ](α) = φ̂(α, z, t) =
∞∫

0

φ(r, z, t)rJ0(αr) dr, (9)

with the main property for our problem:

∞∫
0

(
∂2φ(r, z, t)

∂r2 + 1

r

∂φ(r, z, t)

∂r

)
rJ0(αr) dr = −α2φ̂(α, z, t)− limr→0

(
r
∂φ(r, z, t)

∂r

)
. (10)

The inverse transform for the Hankel transform reads:

H−1 [φ̂] (r, z, t) = φ(r, z, t) =
∞∫

0

φ̂(α, z, t)αJ0(αr) dα. (11)

3.3 Generalized Fourier transform

Here we denote by φ(r, z, t) = {φi (r, z, t)}i=N
i=1 , i.e., the collection of the functions φi (r, z, t), where for given index

i : Li−1 < z < Li . The generalized Fourier transform reads for some given constants wi (wi > 0):

Z[φ](m) = φm(r, t) =
N∑

i=1

Li∫
Li−1

φi (r, z, t)wiψ
m
i (z) dz, m = 1, 2, . . . , (12)

where the function ψm(z) = {
ψm

i (z)
}i=N

i=1 , m = 1, 2, . . . is the mth eigenfunction of the generalized eigenvalue
problem defined by (13–15), with µm = λ2

m , the mth eigenvalue. So, for each subinterval

Kv,i
d2ψm

i (z)

dz2 = −λ2
mwiψ

m
i (z)+ diψ

m
i (z), Li−1 < z < Li , i = 1, . . . , N , (13)

where the positive constants wi and di are to be chosen appropriately, depending on the problem. The bottom and
top boundary conditions are

α0ψ1(0)− β0 Kv,1
dψm

1

dz
(0) = 0, αNψN (L N )+ βN Kv,N

dψm
N

dz
(L N ) = 0, (14)

with the requirement (4), and the interface conditions

ψm
i (Li ) = ψm

i+1(Li ), i = 1, . . . , N − 1,

Kv,i
dψm

i

dz
(Li ) = Kv,i+1

dψm
i+1

dz
(Li ), i = 1, . . . , N − 1.

(15)

The main property of this transform reads (Z[φ](m) = φm(r, t), i.e., the transformed function φ):

N∑
i=1

Li∫
Li−1

w−1
i

(
Kv,i

∂2φi

∂z2 (r, z, t)− diφi (r, z, t)

)
wiψ

m
i (z) dz = −λ2

mZ[φ](m)

−Kv,1

(
ψm

1 (0)
∂φ1

∂z
(r, 0, t)− dψm

1

dz
(0)φ1(r, 0, t)

)

+ Kv,N

(
ψm

N (L N )
∂φN

∂z
(r, L N , t)− dψm

N

dz
(L N )φN (r, L N , t)

)
. (16)
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Strategy for solving semi-analytically three-dimensional transient flow 149

So, for this choice ofψm(z) the second-order differentials of φ transform to the transform of φ. Given the boundary
values at the top and bottom in (3), Eq. 16 reduces to

N∑
i=1

Li∫
Li−1

w−1
i

(
Kv,i

∂2φi

∂z2 (r, z, t)− diφi (r, z, t)

)
wiψ

m
i (z) dz

= −λ2
mZ[φ](m)+ 1

β0
ψm

1 (0) fb(r, t)+ 1

βN
ψm

N (L N ) ft (r, t). (17)

If β0 = 0, the term in (17) with β0 has to be changed into
Kv,1
α0

dψm
1

dz
(0) fb(r, t), and if βN = 0, the term with βN

into − Kv,N
αN

dψm
N

dz
(L N ) ft (r, t). See [2] for details with respect to the actual construction of the eigenfunctions for

the restricted case of di = 0.
With the requirement (4) it can be shown that indeed λ2

m > 0 as follows. Multiply (13) by ψm
i (z), integrate over

(Li−1, Li ), and sum over i = 1, . . . , N . Then one finds, for β0 > 0, and βN > 0

λ2
m

N∑
i=1

Li∫
Li−1

wi
(
ψm

i (z)
)2 dz =

N∑
i=1

Li∫
Li−1

{
−Kv,i

d2ψm
i (z)

dz2 + diψ
m
i (z)

}
ψm

i (z) dz

=
N∑

i=1

Li∫
Li−1

{
Kv,i

(
dψm

i (z)

dz

)2

+ di
(
ψm

i (z)
)2} dz −

N∑
i=1

Kv,i
dψm

i (z)

dz
ψm

i (z)

∣∣∣∣
Li

Li−1

=
N∑

i=1

Li∫
Li−1

{
Kv,i

(
dψm

i (z)

dz

)2

+ di
(
ψm

i (z)
)2} dz − Kv,N

dψm
N (L N )

dz
ψm

N (L N )

+Kv,1
dψm

1 (0)

dz
ψm

1 (0)

=
N∑

i=1

Li∫
Li−1

{
Kv,i

(
dψm

i (z)

dz

)2

+ di
(
ψm

i (z)
)2} dz + αN

βN

(
ψm

N (L N )
)2

+α0

β0

(
ψm

1 (0)
)2
> 0,

due to the requirement (4) and the fact that Kv,i , wi and di are all positive. So it follows that also µm = λ2
m > 0.

If β0 = 0, the term Kv,1
dψm

1 (0)

dz
ψm

1 (0) = 0, and if βN = 0, the term −Kv,N
dψm

N (L N )

dz
ψm

N (L N ) = 0, so the same

conclusion holds.
The construction of the eigenvalues and the eigenfunctions runs as follows (see also [11, pp. 115–120]). On each

z-interval the function ψm
i (z), Li−1 < z < Li , consists of sine functions

ψm
i (z) = Fm

i−1 sin
(
Rm

i (Li − z)
)+ Fm

i sin
(
Rm

i (z − Li−1)
)

sin
(
Rm

i Di
) , Rm

i =
√(
λ2

mwi − di
)
/Kv,i . (18)

So, ψm
i (Li−1) = Fm

i−1 and ψm
i (Li ) = Fm

i , and by the choice of this representation the first requirement in (15) is
fullfilled immediately. To find the values λm and the corresponding {Fm

i }N
i=0 we construct a (N +1× N +1)-matrix

using the conditions (14) and the second requirement in (15). That will lead to the matrix G with equation
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150 E. J. M. Veling, C. Maas

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 −b1 0 0 · · · 0 0 0
−b1 a2 −b2 0 · · · 0 0 0

0 −b2 a3 −b3 · · · 0 0 0
0 0 −b3 a4 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · aN−1 −bN−1 0
0 0 0 0 · · · −bN−1 aN −bN

0 0 0 0 · · · 0 −bN aN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fm
0

Fm
1

Fm
2

Fm
3

· · ·
Fm

N−2
Fm

N−1
Fm

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
· · ·
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where the coefficients are given by

ai = Ai−1 + Ai , i = 1, 2, . . . , N + 1,

bi = Bi = Kv,i Rm
i

sin
(
Rm

i Di
) , i = 1, 2, . . . , N ,

Ai = Bi cos
(
Rm

i Di
)
, i = 1, 2, . . . , N ,

(20)

A0 = α0

β0
, AN+1 = αN

βN
.

For the cases where β0 = 0, or βN = 0, or β0 = βN = 0, one can simply remove the corresponding row(s)
and column(s) from the matrix G. The eigenvalues λ2

m follow from the requirement that det(G) = 0. This will
be a transcedental equation with an infinite number of values λ2

m , m = 1, 2, . . .. In cases where λ2
mwi − di < 0,

one simply changes in (18) and (20) the coefficient Rm
i into Rm

i =
√∣∣λ2

mwi − di
∣∣ /Kv,i and the functions sin

and cos into sinh and cosh, respectively. For the case λ2
mwi − di = 0, the eigenfunction becomes ψm

i (z) =(
Fm

i−1 (Li − z)+ Fm
i (z − Li−1)

)
/Di and Ai = Bi = Kv,i/Di , see [19]. From the general Sturm–Liouville the-

ory we know that the smallest eigenvalue gives rise to an eigenfunction with no zeros in the interval (0, L N ), see
[20, Chap. 4]. The Sign–Count method [21, 19] is useful for the actual calculation of the eigenvalues.

For the generalized Fourier transform the inverse reads:

Z−1[φm](r, z, t) = φ(r, z, t) = {φi (r, z, t)}i=N
i=1 , (21)

where

φi (r, z, t) =
∞∑

m=1

φm(r, t)ψm
i (z)/Nm, with Nm =

N∑
i=1

Li∫
Li−1

wi
{
ψm

i (z)
}2 dz.

The terms in the summation of Nm can be written in terms of the coefficients Ai and Bi as

Li∫
Li−1

{
ψm

i (z)
}2 dz = 1

2
(
λ2

mwi − di
)
{((

Fm
i−1

)2 + (Fm
i

)2)( B2
i Di

Kv,i
− Ai

)
+ 2Bi Fm

i−1 Fm
i

(
1 − Ai Di

Kv,i

)}
, (22)

which is valid both for the cases where λ2
mwi − di > 0 and λ2

mwi − di < 0. If λ2
mwi − di = 0, there holds

Li∫
Li−1

{
ψm

i (z)
}2 dz = Di

3

((
Fm

i−1

)2 + (Fm
i

)2 + Fm
i−1 Fm

i

)
. (23)

3.4 Solution technique

After one has applied two integral transforms, there remains an ordinary differential equation in one of the variables
(r , z, t). Solving this ordinary differential equation in terms of either t or r is not so difficult; the resulting ordinary
differential equation in z is more complicated. Having found the solution of the ordinary differential equation,
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Strategy for solving semi-analytically three-dimensional transient flow 151

one has to apply the inverse transformations of the respective integral transforms. For the Laplace transforms the
inverse transform can be given for quite a number of functions. In cases that one has to deal with functions which
cannot be found analytically, it is important that the inverse transforms can be found by an inversion technique using
only real values for p (such as the Gaver–Stehfest method [22]), because the analysis below shows that complex
p-values complicate the other transforms (some fast numerical methods for the Laplace inversion (such as [23])
require complex values of the transform parameter p).

Below, we shall specify the resulting ordinary differential equation for the three different cases (in r , t , z,
respectively), but first, we discuss the notion of an analytical solution.

4 Classification of analytical solutions

The aim of constructing analytical solutions is to learn as much as possible about the nature of the model under
investigation, since they allow the unknown variable to be presented in terms of the independent variables by
means of more or less known functions (exponentials (exp, sin, cos, sinh, cosh), logarithms) and functions like
Bessel-functions, erfc-functions or functions which can be calculated by a mathematical algorithm. The increase
in power of the computing devices has made it possible to compute such functions whereas before one had to
rely on tables and interpolation. Knowledge of the analytical expression teaches us a lot about limit situations,
asymptotic behaviour and other special cases. It also helps to determine the sensitivity of the solution with respect
to the parameters. Moreover, one can easily determine the derivatives with respect to the spatial variables which
is helpful for particle tracking or gradient-based parameter estimation for cases where the groundwater head is the
dependent variable. And finally, knowledge of the analytical solution of a problem serves as an independent check
on a strictly numerical procedure to calculate the solution. The utility of analytical solutions for these purposes
depends on their degree of explicitness.

Therefore, we propose a classification of analytical solutions according to their degree of explicitness, starting
with the most explicit class. Inevitably, the class boundaries will be arbitrary to some extent.

Class 1. In this case the solution can be expressed in terms of elementary functions and can be calculated in
a straightforward manner. Included in this class are infinite summations and integrals over elementary
functions.

Class 2. This class comes close to Class 1, but differs by the fact that one has to perform some explicit calculation
to find some unknown constants before one can apply the procedure under Class 1. For example, some
boundary-value problems can be expressed as infinite sums that include numbers λn , that have to be
calculated as roots of some transcendental equation (e.g. λn tan λn = C , in which C encompasses an
expression with parameters of the problem).

Class 3. This class resembles Classes 1 and 2, but differs in the sense that certain unknown constants need to be
solved for (e.g. zeros of the determinant of a matrix) in such a way that one can hardly infer anything
about the nature of these constants based on the parameters in the problem (e.g. asymptotic behaviour).
The solution of groundwater problems by means of the analytic-element method [24] belong to this class.

Class 4. Under this class we consider all analytical solutions of an integral transform for which there is no direct
inverse available and one has to apply some kind of numerical transform. Under this class we reckon all
explicitly expressible Laplace transforms; this means that there are no constants involved which have to
be calculated numerically. Sometimes, the inverse Laplace transform is explicitly available, so these func-
tions should belong to Class 1 or 2, but their expressions become cumbersome and numerical inversion
is more straightforward and even more stable in a numerical sense.

Class 5. The same as Class 4, but now we have to deal with unknown constants in the integral transform specified
by a transcedental equation (as under Class 3). The difference between Class 4 and Class 5 is motivated by
the fact that for expressions that fall under Class 4 it is often possible to derive the asymptotic behaviour
(e.g. for Laplace transforms for small t and large t), which is impossible for expressions in this class.
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152 E. J. M. Veling, C. Maas

Class 6. The same as Class 5, but now the constants which have to be solved for in the integral-transform depend
on the integral transform parameter in an implicit way. Under this class we reckon those analytical expres-
sions in which two integral transforms are involved and for which the first inverse transform depends in
an implicit way on the second integral transform parameter (or vice versa). Examples of solutions for this
Class 6 can be found in [25], where transient flow has been treated using the analytic-element method
and in [5], where flow is considered in layered and fissured aquifer systems.

Class 7. The same as Class 6, but for this class the first integral transform depends on two other integral-transform
parameters. Examples for this class are given in [26] and [27].

Sometimes, solutions belonging to Classes 5, 6 and 7 are called semi-analytical.

5 Integral transforms

We analyze the three main possibilities, for solving problem (1–3), (5), and (6), which results in an ordinary dif-
ferential equation in r , t or z. We remark that the order in which one applies the transformations is not important.
In the following we shall assume that the functions φi0(r, z), fb(r, t) and ft (r, t), which represent the initial con-
dition, the bottom boundary and the top boundary, respectively, equal zero, but we note that the construction of the
semi-analytical solutions is still possible without these restrictions. Under these assumptions the presence of the
well ensures that φi (r, z, t)≡/ 0.

5.1 Integral transform in terms of t and z

After application of the Laplace transform, we find:

Ss,i pφi = Kh,i

(
∂2φi

∂r2 + 1

r

∂φi

∂r

)
+ Kv,i

∂2φi

∂z2 , r > 0, Li−1 < z < Li . (24)

We proceed by applying the generalized Fourier transform (12) with the following choices: wi = Kh,i and di =
Ss,i p. Multiplication of (24) by ψm

i (z), and integration over (Li−1, Li ), and summation over i = 1, . . . , N gives
(using (17)):

0 =
(

d2Z
[
φ
]
(m)

dr2 + 1

r

dZ
[
φ
]
(m)

dr

)
− λ2

mZ
[
φ
]
(m), r > 0, m = 1, . . . ,

limr→0

(
r

dZ
[
φ
]
(m)

dr

)
= 1

p
Q̃(m), with Q̃(m) =

N∑
i=1

Li∫
Li−1

Qi

2πli
IAi (z)ψ

m
i (z) dz,

and where
IAi (z) = 1, ai − li/2 ≤ z ≤ ai + li/2,
IAi (z) = 0, Li−1 ≤ z < ai − li/2 and ai + li/2 < z ≤ Li .

(25)

Equation 25 together with the transform of boundary condition (6) can be solved in terms of the Modified Bessel
function of order zero, K0, as

Z
[
φ
]
(m) = − 1

p
Q̃(m)K0 (λmr) . (26)

Notice that in this case λm = λm(p), and so Nm = Nm(p). The full solution has the representation

φ(r, z, t) = {φi (r, z, t)}i=N
i=1 , with φi (r, z, t) = −L−1

[
1

p

∞∑
m=1

Q̃(m)K0 (λmr) ψm
i (z)/Nm

]
. (27)

Although the full solution looks quite simple, to evaluate this function a lot of work has to be done to calculate the
eigenvalues λ2

m for every value of the transform parameter p that is required during the Laplace-transform inversion.
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Clearly, this solution belongs to Class 6, described in Sect. 4. This representation is particularly useful for particle
tracking after explicit differentiation of (27) with respect to r and z.

As a side remark we mention the fact that in the quite restrictive case Kh,i/Ss,i = ρ, independent of i , we can
apply the generalized Fourier transform with di = 0, moving the solution to Class 3; see the Appendix A for details.

5.2 Integral transform in terms of r and z

After an application of the Hankel transform, we find (for i = 1, . . . , N )

Ss,i
∂φ̂i

∂t
= −Kh,iα

2φ̂i − Qi

2πli
+ Kv,i

∂2φ̂i

∂z2 , t > 0, ai − li/2 ≤ z ≤ ai + li/2,

Ss,i
∂φ̂i

∂t
= −Kh,iα

2φ̂i + Kv,i
∂2φ̂i

∂z2 , t > 0, Li−1 ≤ z < ai − li/2 and ai + li/2 < z ≤ Li ,

(28)

where we denote by φ̂i the function φ̂i (α, z, t). Next, we apply the generalized Fourier transform (with wi = Ss,i

and di = Kh,iα
2):

dZ
[
φ̂
]
(m)

dt
= −Q̃(m)− λ2

mZ
[
φ̂
]
(m), t > 0, m = 1, . . . , (29.1)

where Q̃(m) has been defined in (25),

Z
[
φ̂
]
(m) = 0, t = 0. (29.2)

This equation can easily be solved as

Z
[
φ̂
]
(m) = −Q̃(m)

(
1 − exp

(−λ2
mt
)

λ2
m

)
, (30)

Notice that in this case λm = λm(α
2), and so Nm = Nm(α

2). The full solution has the representation

φ(r, z, t) = {φi (r, z, t)}i=N
i=1 ,

with φi (r, z, t) = −
∞∫

0

{ ∞∑
m=1

Q̃(m)

(
1 − exp

(−λ2
mt
)

λ2
m

)
ψm

i (z)/Nm

}
αJ0(αr) dα. (31)

Once more, to evaluate this function a lot of work has to be done to calculate the eigenvalues λ2
m for every value of

the transform parameter α required during the integration over α. Clearly, this presentation of the solution belongs
also to Class 6, described in Sect. 4.

Again, as a side remark we mention that, if Kh,i/Ss,i = ρ, the solution becomes simpler, moving the solution to
Class 3; see the Appendix B.

5.3 Integral transform in terms of t and r

Application of the Laplace transform (7) to (1) gives (24), where we denote byφi the functionφi (r, z, p). Application
of the Hankel transform (9) gives

Ss,i pφ̂i,b = −Kh,iα
2φ̂i,b + Kv,i

d2φ̂i,b

dz2 , Li−1 ≤ z < ai − li/2,

Ss,i pφ̂i,w = −Kh,iα
2φ̂i,w − 1

p

Qi

2πli
+ Kv,i

d2φ̂i,w

dz2 , ai − li/2 ≤ z ≤ ai + li/2,

Ss,i pφ̂i,t = −Kh,iα
2φ̂i,t + Kv,i

d2φ̂i,t

dz2 , ai + li/2 < z ≤ Li ,

(32)
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where we denote by φ̂i,s the function φ̂i,s(α, z, p), s = b, w, t (for the bottom-, well-, top-sublayer, respectively).
In (32) the conditions (2) and (6) have been incorporated. The coupled ordinary differential equations (32) have to
be solved subject to the transformed versions of boundary conditions (3) and (5), namely

α0φ̂1,b(α, 0, p)− β0 Kv,1
dφ̂1,b

dz
(α, 0, p) = 0, (33)

αN φ̂N ,t (α, 0, p)+ βN Kv,N
dφ̂N ,t

dz
(α, L N , p) = 0, (34)

and

φ̂i,t (α, Li , p) = φ̂i+1,b(α, Li , p), i = 1, . . . , N − 1,

Kv,i
dφ̂i,t

dz
(α, Li , p) = Kv,i+1

dφ̂i+1,b

dz
(α, Li , p), i = 1, . . . , N − 1,

(35)

and with the continuity conditions at the levels of the partially penetrating filters

φ̂i,b(α, ai − li/2, p) = φ̂i,w(α, ai − li/2, p), i = 1, . . . , N ,

dφ̂i,t

dz
(α, ai − li/2, p) = dφ̂i,w

dz
(α, ai − li/2, p), i = 1, . . . , N ,

(36)

and

φ̂i,w(α, ai + li/2, p) = φ̂i,t (α, ai + li/2, p), i = 1, . . . , N ,

dφ̂i,w

dz
(α, ai + li/2, p) = dφ̂i,t

dz
(α, ai + li/2, p), i = 1, . . . , N .

(37)

Next, we apply the generalized Fourier transform to φ̂i choosing wi = Ss,i p + Kh,iα
2, di = 0. Two other

choices apply as well, namely {wi = Ss,i p, di = Kh,iα
2} and {wi = Kh,iα

2, di = Ss,i p}. Both lead to the
same equations as below, but the corresponding eigenvalues and eigenfunctions are different, because the defining
ordinary differential equation for the eigenfunctions is different. Consequently, also Q̃(m) is different for the three
choices.

Z
[
φ̂
]
(m) = − 1

p
Q̃(m)− λ2

mZ
[
φ̂
]
(m), t > 0, m = 1, . . . , (38)

from which one can infer that

Z
[
φ̂
]
(m) = − Q̃(m)

p(1 + λ2
m)
. (39)

Finally, the solution of the full problem can be written as

φi (r, z, t) = −L−1

⎡
⎣

∞∫
0

{ ∞∑
m=1

Q̃(m)

p(1 + λ2
m)
ψm

i (z)/Nm

}
αJ0(αr) dα

⎤
⎦, i = 1, . . . , N . (40)

(in this case λm = λm(p, α2), and so Nm = Nm(p, α2)). Now one has to calculate the eigenvalues λ2
m for every

value of the transform parameters p and α2. The analytical solution found this way belongs to Class 7, as described
in Sect. 4.

If one assumes the restrictive hypothesis that Kh,i/Ss,i = ρ, independent of i , one takes wi = Ss,i , di = 0, the
solution becomes simpler, moving the solution to Class 3; see the Appendix C for details.

Another way to solve the resulting coupled ordinary differential equations (32) with (33–37) can be performed
in a straightforward manner as was done in [26] for a comparable case with a natural groundwater flow in the
horizontal x-direction and a prescribed flux at x = 0 over the full height of the corresponding aquifer instead of
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the case here with a partially penetrating filter. The solution for the case α0 = αN = 0 in (33) and (34) can be

represented by (for i = 1, . . . , N , and with the shorthand notation Ri =
√(

Ss,i p + Kh,iα2
)
/Kv,i ),

φ̂i,b(α, z, p) = Fi,b cosh (Ri (z − (ai − li/2)))− Fi,w cosh (Ri (z − Li−1))

Kv,i Ri sinh (Ri ((ai − li/2)− Li−1))
, Li−1 ≤ z < ai − li/2,

φ̂i,w(α, z, p) = Fi,w cosh (Ri (z − (ai + li/2)))− Fi,t cosh (Ri (z − (ai − li/2)))

Kv,i Ri sinh (Rili )

− 1

p
(
Ss,i p + Kh,iα2

) Qi

2πli
, ai − li/2 ≤ z ≤ ai + li/2,

φ̂i,t (α, z, p) = Fi,t cosh (Ri (z − Li ))− Fi+1,b cosh (Ri (z − (ai + li/2)))

Kv,i Ri sinh (Ri (Li − (ai + li/2)))
, ai + li/2 < z ≤ Li .

(41)

The coefficients Fi,b, Fi,w, Fi,t represent the fluxes at the levels z = Li−1, ai − li/2, ai + li/2, respectively, where
FN+1,b is the flux at the upper boundary of the system of N layers. By this representation the continuity conditions
with respect to the fluxes (the second condition in (35–37)) have been satisfied automatically. These coefficients
can be found by inversion of a tridiagonal, symmetric (3N − 1, 3N − 1)-matrix, if there is one partially penetrating
filter in each aquifer. Otherwise, the dimension of the matrix becomes (N + 2Nw − 1, N + 2Nw − 1), where Nw
(Nw ≤ N ) is the number of filters at r = 0. Using Cramer’s rule one may express these coefficients analytically in
terms of the parameters of the problem Ss,i , Kh,i , Kv,i , Li , ai , and li and the transform parameters p and α2 in a
complicated way. The inverse transforms have to be done numerically as was done in [26]. Clearly, the analytical
solution thus found belongs also to Class 7, as described in Sect. 4.

6 Applications

In this section we apply the solution technique as specified in (27) to three different cases. For the Laplace inversion
we employed the Gaver–Stehfest method [22]. For these applications we show how the water particles move under
the influence of the wells. This is possible because we can now easily derive analytically the velocity field based
on the representation of the groundwater head, using the relations

vr = −εi Kh,i
∂φi (r, z, t)

∂r
, vz = −εi Kv,i

∂φi (r, z, t)

∂z
, i = 1, . . . , N , (42)

where vr , vz [LT−1] are the velocties in the r - and z-directions, respectively, and εi [−] is the porosity of layer i .
We constructed Matlab scripts for evaluation of the groundwater head (plots as function of r , z or t , and contour

plots as function of (r, z), (r, t) or (z, t)) and for evaluation of the velocity field as function of (r, z, t).

6.1 Case with 2 layers

For this case we refer to [28]. Therein, a system was considered consisting of one aquifer and one aquitard, with an
impermeable base and a specified head at the top. A condition was derived under which a point extraction caused
the path of a water particle moving to and from that extraction to be nonmonotonic. That condition reads

R = K c/a > 4, (43)

where K = Kh,1 = Kv,1, the hydraulic conductivity of the aquifer, c = D2/Kv,2, the hydraulic resistance of the
aquitard, a = D1 − a1, the distance from the top of the aquifer to the point extraction.
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Fig. 1 Transient and steady pathlines for the two-layer case
(Sect. 6.1) for particles starting at r = 10 [m], z = 68.3 [m], at
t = 1 [d]. At t = 2000 [d] the injection becomes an extraction.
The backward flowpath of that particle is also shown

0 50 100 150 200 250 300 350 400 450
60

65

70

75

t0 = 1,   r −−> 

z 
−

−
>

Pathline (r0 = 10 and z0 = 68.3)

 = transient
 = transient−backwards
 = steady

Fig. 2 Enlarged view of Fig. 1

For the current example the layer parameters are:

Layer D [m] Kh [m/d] Kv [m/d] Ss [1/m] ε [−] α [−] β [T]

1 80 25 25 0.05 0.3 α0 = 0 α0 = 1
2 4.5 0.01 0.01 0.05 0.3 β1 = 1 β1 = 0

Well Q [m3/d] Bottom well [m] Top well [m]

1 −9240 52.5 70

Condition (43) can be applied if the extraction is considered to be concentrated at the well center z = a1. It is
found that R = 600 hence, (43) is satisfied.

We first followed a particle starting from the well (Qinjection = −9240 [m3/d]) at r0 = 10 [m], and z0 = 68.3 [m]
at time t0 = 1 [d] up to tend = 2000 [d] under a transient regime (the solid line in Figs. 1, 2). Second, we followed
another particle from the well by the same injection rate under a steady regime (the dashed line in Figs. 1, 2), and
finally, we started an extraction at tend,injection = 2000 [d] at the same rate (Qextraction = −Qinjection) and followed
the first particle backwards from the point where it had arrived during the injection up till the starting distance
from the well (rstart = 10 [m]) (the dotted line in Figs. 1, 2). The particle reached that starting distance at a level
of zend = 67.437 [m] at the time tend,extraction = 3957.51 [d]. This means that the point of arrival was 0.863 [m]
lower than the starting point and that the backwards journey went faster (in tend,injection − tend,extraction = 1957.51
[d]). The flow path for the steady case ends farther from the well than for the transient case.

6.2 Case with 4 layers

Next, we consider a system with 4 layers, two aquifers and two aquitards, with an impermeable base and a specified
head at the top. There are two wells active: an injection well in the bottom aquifer and an extraction well in layer 3
with the same rate but opposite sign. The parameters are:

123



Strategy for solving semi-analytically three-dimensional transient flow 157

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

t0 = 1,   r −−> 

z 
−

−
>

Pathline (r0 = 20 and z0 = 20)

 = transient
 = transient−backwards
 = steady

Fig. 3 Transient and steady pathlines for the four-layer case
(Sect. 6.2) for particles starting at r = 20 [m], z = 20 [m], at
t = 1 [d]. At t = 191 [d] the injection becomes an extraction.
The backward flowpath is also shown. The path through the
aquitard is almost vertical
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Fig. 4 Transient and steady pathlines for the four layer case
(Sect. 6.2) for particles starting at r = 20 [m], z = 20 [m],
at t = 1 [d]. The position of the vertical location z is shown
as a function of time t . At t = 191 [d] the injection becomes
an extraction. The corresponding flowpath is shown with a re-
versed time-axis, to show the differences with the forward path.
The horizontal sections of the curves belonging to the passage
through the aquitard, are clearly visible. That passage time is
shorter in the steady case

Layer D [m] Kh [m/d] Kv [m/d] Ss [1/m] ε [−] α [−] β [T]

1 50 25 25 0.01 0.3 α0 = 0 β0 = 1
2 5 1 1 0.05 0.3 – –
3 40 40 40 0.1 0.3 – –
4 5 1 1 0.1 0.3 α4 = 1 β4 = 0

Well Q [m3/d] Layer Bottom well [m] Top well [m]

1 −9240 1 15 25
2 9240 3 60 70

See Fig. 3 for the path as a function of r and z, and Fig. 4 as a function of t and z.

6.3 Case with 6 layers

Finally, we consider a system of 6 layers, three aquifers and three aquitards, with an impermeable base and top.
There are three wells active: injection wells in the bottom aquifer and in the top aquifer and an extraction well in
the middle aquifer. The net rate of the injections and extraction is zero. The parameters are:

Layer D [m] Kh [m/d] Kv [m/d] Ss [1/m] ε [−] α [−] β [T]

1 20 25 25 0.01 0.3 α0 = 0 β0 = 1
2 5 5 1 0.05 0.3 − −
3 20 25 25 0.1 0.3 − −
4 5 5 1 0.1 0.3 − −
5 20 25 25 0.1 0.3 − −
6 5 5 5 0.1 0.3 α6 = 0 β6 = 1
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Fig. 5 Transient and steady pathlines for the six layer case
(Sect. 6.3) for particles starting at r = 5 [m], z = 55 [m], at
t = 1 [d]. At t = 38 [d] the injection becomes an extrac-
tion. The backward flowpath is also shown. The influence of
the extraction in the middle aquifer is felt more directly in the
steady case, because the particle comes closer to that extraction
after 37 days
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Fig. 6 Enlarged view of Fig. 5

Well Q [m3/d] Layer Bottom well [m] Top well [m]

1 −500 1 5 15
2 1000 3 30 40
3 −500 5 55 60

See Fig. 5 shows the path as function of r and z, and Fig. 6 shows the same for an enlarged view.

7 Conclusions

We have applied a generalized Fourier transform, specified by (12–16), and (21) to solve semi-analytically a long-
standing problem in hydrology: three-dimensional transient flow in a coupled system of aquifers with z-dependence.

This generalized Fourier transform, with the restriction di = 0 in (13), has been applied succesfully in the past
for cases where one has to deal only with just two independent variables (r and z (a stationary case); see [1]. It
could be applied for the case with the independent variables t and z (an one-dimensional (vertical), transient case),
and also in cases where one can justify the assumption that Kh,i/Ss,i = ρ is independent of i . In all those cases the
solution will belong to Class 3 of a classification of analytical solutions we proposed in Sect. 4.

Here, we have relaxed that restriction (so di �= 0) and are able to treat more complicated partial differential
equations. We presented two forms of the semi-analytical solution for the full transient solution of the flow in a
coupled system, namely (27) and (31), belonging to Class 6, and one form (39) belonging to Class 7 of the proposed
classification.

In the first case (27), a numerical Laplace-inversion method has to be applied which uses only real values for
the transform parameter p. Alternatively, one could use the form (31) and apply the Hankel-inversion integral (11).
This method might give rise to numerical complications due to the oscillating character of the Bessel J0-function. It
is clear that the representation belonging to Class 7 is not very economical with respect to calculation time. For the
examples we employed the first case based on the numerical Laplace inversion using the Gaver–Stehfest method
[22].
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As an extension we remark that this generalized Fourier transform can be applied also to cases with an unconfined
upper aquifer. Standard approximations (see [29] and e.g. [27]) arrive at a model where the boundary condition at
the top (3) has been modified into

Kv,N
∂φN

∂z
(r, L N , t) = −SY

∂φN

∂t
(r, L N , t), t ≥ 0, r > 0, (44)

where SY [−] is the specific yield. In such cases, we take βN = 1/p, and αN = SY , with p the Laplace-transform
parameter. This will be studied in a future paper.

Finally, the theory presented here is not restricted to groundwater flow, but applies to every layered system
of variables which are described by the defining partial differential equation (1). The generalized Fourier trans-
form technique is applicable also in cases where another horizontal spatial operator is active (e.g. ∂2

∂x2 or ∂2

∂y2 or(
∂2

∂x2 + ∂2

∂y2

)
).
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Appendix A: Integral transform in terms of t and z for the case Kh,i/Ss,i = ρ

In this case the remaining problem becomes

pZ
[
φ
]
(m) = ρ

(
d2Z

[
φ
]
(m)

dr2 + 1

r

dZ
[
φ
]
(m)

dr

)
− λ2

mZ
[
φ
]
(m), r > 0, m = 1, . . . ,

limr→0

(
r

dZ
[
φ
]
(m)

dr

)
= 1

ρp
Q̃(m), with Q̃(m) =

N∑
i=1

Li∫
Li−1

Qi

2πli
IAi (z)ψ

m
i (z) dz,

and where
IAi (z) = 1, ai − li/2 ≤ z ≤ ai + li/2,
IAi (z) = 0, Li−1 ≤ z < ai − li/2 and ai + li/2 < z ≤ Li .

(A1)

In this case λm is independent of p. The solution of (A1) now reads

Z
[
φ
]
(m) = − 1

ρp
Q̃(m)K0

⎛
⎝r

√
p + λ2

m

ρ

⎞
⎠ , (A2)

where the dependence on p is explicit. The λm values are now independent of p and α2. The inverse transform with
respect to p gives

Z[φ](m) = − 1

ρ
Q̃(m)

t∫
0

1

2τ
exp
(
−λ2

mτ − r2/(4ρτ)
)

dτ, (A3)

[30, Eq. 29.3.120]. The integral is the well-known Hantush well function, defined as

W (u, w) =
u∫

0

x−1 exp(−x − w2/(4x)) dx, (A4)

so,

Z[φ](m) = − 1

ρ
Q̃(m)W

⎛
⎝λ2

mt,

√
λ2

mr2

ρ

⎞
⎠/2. (A5)
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Clearly, this solution belongs to Class 3, as described in Sect. 4. This result can also be written in terms of the
so-called generalized incomplete Gamma function γ (α, x; b) [31, (2.64)] defined as

γ (α, x; b) =
x∫

0

tα−1 exp(−t − bt−1)dt, (A6)

namely

Z[φ](m) = − 1

ρ
Q̃(m)γ

(
0, λ2

mt; λ
2
mr2

4ρ

)
/2, (A7)

because W (u, w) = γ (0, u;w2/4). As a curiosity we remark that γ (α, x; b) may be written as a double sum
[31, compare Eq. 2.128].

Appendix B: Integral transform in terms of r and z for the case Kh,i/Ss,i = ρ

In this case (28) becomes after the generalized Fourier transform (with wi = Ss,i and di = 0)

dZ
[
φ̂
]
(m)

dt
= −ρα2Z

[
φ̂
]
(m)− Q̃(m)− λ2

mZ
[
φ̂
]
(m), t > 0, m = 1, . . . , (B1.1)

where Q̃(m) has been defined in (25),

Z
[
φ̂
]
(m) = 0, t = 0. (B1.2)

The solution of (B1.2) reads

Z
[
φ̂
]
(m) = −Q̃(m)

(
1 − exp

(−(ρα2 + λ2
m)t
)

ρα2 + λ2
m

)
, (B3)

and (by differentiation of this expression with t , application of the inverse Hankel transform (11), using [30, Eq.
29.3.75] and integration by τ )

Z[φ](m) = − 1

ρ
Q̃(m)

t∫
0

1

2τ
exp
(
−λ2

mτ − r2/(4ρτ)
)

dτ. (B4)

Of course, (B4) and (A3) are equal.

Appendix C: Integral transform in terms of t and r for the case Kh,i/Ss,i = ρ

Now, with wi = Ss,i , di = 0, the equivalent of (38) becomes

pZ
[
φ̂
]
(m) = −ρα2Z

[
φ̂
]
(m)− 1

p
Q̃(m)− λ2

mZ
[
φ̂
]
(m), t > 0, m = 1, . . . , (C1)

with the solution

Z
[
φ̂
]
(m) = − Q̃(m)

p(p + ρα2 + λ2
m)
. (C2)

In this case λm is independent of p and α2, and so Nm . The inverse transform with repect to p, Z
[
φ̂
]
(m), deliv-

ers (B3), so, again Z[φ](m) is found as (A3) or (B4). Here the generalized Fourier transform with corresponding
eigenvalues has to be calculated only once, and depends just on the parameters of the problem Ss,i , Kh,i = Ss,iρ,
Kv,i , and Li .
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